Crowding effects on the mechanical stability and unfolding pathways of ubiquitin.
نویسندگان
چکیده
The interiors of cells are crowded, thus making it important to assess the effects of macromolecules on the folding of proteins. Using the self-organized polymer (SOP) model, which is a coarse-grained representation of polypeptide chains, we probe the mechanical stability of ubiquitin (Ub) monomers and trimers ((Ub)(3)) in the presence of monodisperse spherical crowding agents. Crowding increases the volume fraction (Phi(c))-dependent average force (f(u)(Phi(c))), relative to the value at Phi(c) = 0, needed to unfold Ub and the polyprotein. For a given Phi(c), the values of f(u)(Phi(c)) increase as the diameter (sigma(c)) of the crowding particles decreases. The average unfolding force f(u)(Phi(c)) depends on the ratio D/R(g), where D approximately sigma(c)(pi/6Phi(c))(1/3), with R(g) being the radius of gyration of Ub (or (Ub)(3)) in the unfolded state. Examination of the unfolding pathways shows that, relative to Phi(c) = 0, crowding promotes reassociation of ruptured secondary structural elements. Both the nature of the unfolding pathways and f(u)(Phi(c)) for (Ub)(3) are altered in the presence of crowding particles, with the effect being most dramatic for the subunit that unfolds last. We predict, based on SOP simulations and theoretical arguments, that f(u)(Phi(c)) approximately Phi(c)(1/3nu), where nu is the Flory exponent that describes the unfolded (random coil) state of the protein.
منابع مشابه
The effects of macromolecular crowding on the mechanical stability of protein molecules.
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquit...
متن کاملMechanical unfolding and refolding pathways of ubiquitin.
Mechanical unfolding and refolding of ubiquitin are studied by Monte Carlo simulations of a Gō model with binary variables. The exponential dependence of the time constants on the force is verified, and folding and unfolding lengths are computed, with good agreement with experimental results. Furthermore, the model exhibits intermediate kinetic states, as observed in experiments. Unfolding and ...
متن کاملRefolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin.
The refolding from stretched initial conformations of ubiquitin (PDB ID: 1ubq) under the quenched force is studied using the C(alpha)-Gō model and the Langevin dynamics. It is shown that the refolding decouples the collapse and folding kinetics. The force-quench refolding-times scale as tau(F) approximately exp(f(q)Deltax(F)/k(B)T), where f(q) is the quench force and Deltax(F) approximately 0.9...
متن کاملEnergy landscape of ubiquitin modulated by periodic forces: Asymmetric protein stability and shifts in unfolding pathways
Biological forces govern essential cellular and molecular processes in all living organisms. Many cellular forces, e.g. those generated in cyclic conformational changes of biological machines, have repetitive components. However, little is known about how proteins process repetitive mechanical stresses. To obtain first insights into dynamic protein mechanics, we probed the mechanical stability ...
متن کاملEffects of Crowding on the Stability of a Surface-Tethered Biopolymer: An Experimental Study of Folding in a Highly Crowded Regime
The high packing densities and fixed geometries with which biomolecules can be attached to macroscopic surfaces suggest that crowding effects may be particularly significant under these often densely packed conditions. Exploring this question experimentally, we report here the effects of crowding on the stability of a simple, surface-attached DNA stem-loop. We find that crowding by densely pack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 1 شماره
صفحات -
تاریخ انتشار 2009